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Abstract

Modern JavaScript engines optimize hot functions using
a JIT compiler along with type information gathered by
an online profiler. However, the profiler’s information can
be unsound and when unexpected types are encountered
the engine must recover using an expensive mechanism
called deoptimization. In this paper we describe a method to
significantly reduce the number of deoptimizations observed
by client-side JavaScript engines by using ahead-of-time
profiling on the server-side. Unlike previous work on ahead-
of-time profiling for statically-typed languages such as Java
[13, 24] our technique must operate on a dynamically-typed
language, which significantly changes the required insights
and methods to make the technique effective. We implement
our proposed technique using the SpiderMonkey JavaScript
engine, and we evaluate our implementation using three
different kinds of benchmarks: the industry-standard Octane
benchmark suite, a set of JavaScript physics engines, and a
set of real-world websites from the Membench50 benchmark
suite. We show that using ahead-of-time profiling provides
significant performance benefits over the baseline vanilla
SpiderMonkey engine.
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1. Introduction

JavaScript has emerged as the de facto language of the web.
With websites becoming more and more JavaScript-heavy,
JavaScript performance has become an ever greater concern.
Modern JavaScript engines have multi-tier execution archi-
tectures with sophisticated optimizing JIT compilers. Like
optimizing JIT compilers for statically-typed languages (e.g.,
the JVM [3] and CLR [2]), JavaScript JIT compilers opti-
mize based on profile information collected during execution.
But unlike those other JITs, the collected profile informa-
tion for JavaScript is of a different nature involving heuristic
type information that is not guaranteed to be correct. When a
function is optimized using profile-based type assumptions,
there is a chance that those assumptions will not hold in
the future. The JavaScript JIT compiler will optimize a hot
function based on the types observed during the previous
executions of the function. In the future, if new, unexpected
types are encountered during execution of the optimized code,
the JavaScript engine must employ a recovery mechanism
called deoptimization to guarantee correctness. This recovery
mechanism is a heavy-weight, expensive process that can
severely impede the engine’s performance.

In this paper we propose a technique that uses ahead-of-
time type profiling on the webserver side in order to determine
type and hotness information for a JavaScript program; that
information is sent to the web browser client as commented
annotations in the JavaScript code, and the client uses that
information to reduce the number of deoptimizations during
execution. Client JavaScript engines that are aware of the
ahead-of-time profiling information can take advantage of
it, while client engines that are not aware of it can safely
ignore it. The intent of this technique is not to reduce
profiling or compilation overhead (which turn out to be
mostly insignificant), but rather to reduce the number of
deoptimizations during program execution and also to enable
more aggressive and earlier optimization of functions without
having to fear increased deoptimizations.

A naive approach to ahead-of-time type profiling for
JavaScript would simply observe the execution of the pro-
gram on some set of inputs and (1) mark all functions that
become hot sometime during the execution, so that they can



be optimized immediately instead of waiting; and (2) remem-
ber all types seen during the execution of those hot functions,
so that the optimized versions will not have to be deoptimized
due to type changes. However, it turns out that this naive ap-
proach would significantly degrade performance on the client
and would also create program annotations potentially orders
of magnitude larger than necessary. We explain the reasons
behind this observation and our key insights that allow ahead-
of-time profiling to be both practical and effective.

Previous work for statically-typed language JIT compil-
ers has proposed using ahead-of-time profiling, as discussed
in Section 2. However, JavaScript provides a new setting
that requires new techniques and insights. We show that for
JavaScript: deoptimization is an important performance con-
cern; ahead-of-time profiling can provide significant perfor-
mance benefits by avoiding deoptimization; and the annota-
tion comments in the JavaScript code sent from the server
increase code size by only a small fraction. The specific con-
tributions of this work are:

e We describe a method for ahead-of-time profiling of
JavaScript programs to collect type and hotness informa-
tion. We identify the key kinds of information and places
to collect that information that provides the most benefit
for optimization without requiring excessive annotations
on the program code being sent over the network.

We describe a method for JavaScript engines to take
advantage of the ahead-of-time profiling information to
reduce deoptimizations and to more aggressively optimize
functions without incurring increased deoptimizations.

We evaluate our ideas using Mozilla’s JavaScript en-
gine SpiderMonkey. Our experiments show that our
technique is beneficial for both load-time and long-
running JavaScript applications, as represented by the
Membench50 load-time benchmark suite, the industry-
standard Octane performance benchmark suite, and a set
of open-source JavaScript physics engines. We measure
the performance using three different criteria: execution
time for Octane benchmarks, frames per second (FPS) for
the JavaScript physics engines, and reductions in number
of deoptimizations for the Membench50 benchmarks. Our
evaluation shows a maximum speedup of 29% and an
average speedup of 13.1% for Octane benchmarks, a max-
imum improvement of 7.5% and an average improvement
of 6.75% in the FPS values for JavaScript physics engines,
and an average 33.04% reduction in deoptimizations for
the Membench50 benchmarks.

The rest of the paper is organized as follows. Section 2 de-
scribes related work on optimizing JIT compilers. Section 3
provides background information on the JavaScript language
and on modern JavaScript engine architectures. Section 4
describes the concepts behind our technique. Section 5 de-
scribes our evaluation methodology and results, and Section 6
concludes.

2. Related Work

Our work builds on decades of research into optimizing JIT
compilers, such as Self [20, 22], Java HotSpot VM [27],
Jalepeno [12], PyPy [15], Google’s V8 engine [30], Mozilla’s
SpiderMonkey [28], and WebKit’s JavaScriptCore [23]. We
review the most relevant of that related work below.

2.1 Ahead-of-Time Profiling

Ahead-of-time profiling for the purpose of optimizing a
JIT compiler is not a new idea, but previous efforts have
focused on statically-typed languages such as Java and C#.
JavaScript, a dynamically-typed language, provides a new
setting that dramatically changes the required insights and
techniques. In particular, the most important optimization
performed by a JavaScript JIT compiler is type specialization
based on unsound heuristics such as online type profiling.
Because type specialization is unsound, the engine must be
able to deoptimize the specialized code when it encounters
unanticipated types. Deoptimization is an important cause
of performance loss and is the main target of our technique,
unlike any of the previous ahead-of-time profiling techniques
described below. We do in addition follow previous work
in using ahead-of-time profiling to detect hot functions that
can then be compiled early. However, our new setting also
influences this existing technique in new ways because merely
detecting hotness is insufficient—we must also ensure that the
hot function is type stable for early compilation to have any
benefit, otherwise deoptimization is likely to happen. We now
describe the previous work on ahead-of-time profiling for JIT
compilation, which all target statically-typed languages.
Krintz and Calder [24, 25] describe an approach to identify
hot functions and hot callsites in Java programs using anal-
ysis information collected offline. This information is used
by the JIT compiler to guide its optimization heuristic. Our
approach is similar to their approach of using offline data to
guide online optimizations. Unlike their approach, our offline
profiler collects type information and deoptimization informa-
tion in addition to hot functions and hot callsite information.
The type information is important for a dynamically-typed
language such as JavaScript because most of the optimiza-
tions that are performed in the optimizing compiler depend
on stable type information. Deoptimization information helps
to figure out possible places where deoptimizations occur in
the hot functions and the reasons why deoptimization has
happened. This information helps the optimizing compiler to
make better decisions while compiling those hot functions.
Arnold et al. [13] describe an Java virtual machine archi-
tecture that uses a cross-run profile repository to improve
performance. The main idea described in that paper is to cap-
ture the profile data at the end of the execution of the program
instead of discarding it after every run. This collective pro-
file information is used to guide the selective optimization
of functions based on metrics like future use. A key idea of



that work is to address the compilation time vs. future execu-
tion time trade-off inherent in single-threaded engines that
interleave execution and JIT compilation. Modern JavaScript
engines employ concurrent JIT compilation, and so compi-
lation time is generally not as important an issue. Also, we
take advantage of the client/server infrastructure inherent in
the world-wide web to do the ahead-of-time profiling on the
server side and send the resulting information to the client
for it to take advantage of, rather than doing profiling in the
client itself.

2.2 Type Annotations for JavaScript

Developers and researchers have created several typed vari-
ants of JavaScript. These variants are either restricted subsets
of the full JavaScript language or do not allow the types to be
used by the JIT compiler for optimization.

The JavaScript dialect asm. js [14] is a strict subset of
JavaScript that is intended to be generated by compilation
to JavaScript from some statically-typed language such as C.
It indicates the types of variables and operations based on
subtle syntactic hints and a "use asm" prologue directive.
Though this enables the JavaScript engine to perform ahead-
of-time compilation and faster execution, the asm. js syntax
is very restrictive and is not suitable for writing modern
webpages. It is designed to be an intermediate representation
for porting applications written in statically-typed languages
into the web browser. In contrast, our approach deals with
already existing JavaScript programs and handles the entire
JavaScript language.

Flow [18] is a static type checker for JavaScript that allows
type annotations in the syntax. These annotations are used
by the compiler to type-check the code for correctness. An
optimizing JIT compiler cannot make use of these annotations
because the annotations are erased during the translation
of Flow code to JavaScript. This is also true of Google’s
Closure compiler [16], which allows type annotations in the
JavaScript code, and of TypeScript [29], a typed superset of
JavaScript.

2.3 JavaScript Engine Optimizations

Guckert et al. [19] show that persistent caching of compiled
JavaScript code across visits to the same webpage helps re-
duce compilation time by up to 94% in some cases. However,
because the optimizing compiler usually runs in a separate
parallel thread compilation time is not much of a concern in
modern JavaScript engines. In addition, this technique does
not translate well to a setting where the server is responsible
for collecting information and sending it over the network
to clients, due to the large size of the compiled code and its
specificity to a particular architecture.

Oh and Moon [26] describe another client-side optimiza-
tion technique targeting load-time JavaScript code (i.e.,
JavaScript code executed when a webpage is loaded by
the browser). This technique caches snapshots of the heap
objects that are generated during the load time; the snapshots

are serialized during caching and then deserialized when the
page is reloaded. This approach uses significant amounts
of storage space and does not translate well to server-side
profiling.

3. Background

In this section we describe background on the JavaScript
language and modern JavaScript engines required in order to
understand the key concepts discussed in this paper.

3.1 The JavaScript Language

JavaScript is an imperative, dynamically-typed scripting lan-
guage with objects, prototype-based inheritance, higher-order
functions, and exceptions. Objects are the fundamental data
structure in the language. Object properties (the JavaScript
name for object fields) are arbitrary strings and can be dynam-
ically inserted into and deleted from objects during execution.
Because property names are just strings, a JavaScript program
can compute a string value during execution and use it as a
property name in order to access an object’s existing property
or to insert a new property. A form of runtime reflection can
be used for object introspection in order to iterate over the
properties currently held in an object. Even functions and
arrays are just different kinds of objects, and can be treated
in the same way as other objects, e.g., inserting and delet-
ing arbitrary properties. JavaScript is designed to be resilient
even in the face of nonsensical actions such as accessing a
property of a non-object (i.e., a primitive value) or adding
two functions together; such cases are handled using implicit
type conversions and default behaviors in order to continue
execution as much as possible without raising an exception.

3.2 JavaScript Engine Architecture

Modern JavaScript engines rely heavily on profiling and JIT
compilation for performance. The JIT compiler relies on
type information gathered by the profiler in order to enable
effective optimizations in the face of JavaScript’s inherent
dynamism. Type information includes not just the primi-
tive kinds of values (number, boolean, string, object,
undefined, and null), but in addition information about ob-
Jject shape, i.e., a list of object properties and their offsets in
the object. Because properties can be arbitrarily added to and
deleted from an object, object shapes can change frequently
during execution.

Figure 1 shows a typical multi-tier architecture for a
generic JavaScript engine, based on the designs of existing
production JavaScript engines such as Google’s V8 [17],
Mozilla’s Spidermonkey [28], and WebKit’s JavaScript-
Core [23]. These tiers operate at the granularity of individual
functions.

Tier 1. The first tier of execution is a fast interpreter for
parser-generated bytecode. The interpreter is used to ensure
quick response times during execution of the JavaScript
program. For example, SpiderMonkey’s bytecode interpreter
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Figure 1: Flow graph showing different phases of execution
in a generic JavaScript engine. The interpretation phase,
represented by dashed lines, is an optional phase in JavaScript
engines like Google’s V8.
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and JavaScriptCore’s LLInt execute functions for the first
10 and 6 times they are called, respectively. Once the given
threshold is reached, the function is considered warm. Not all
engines use this first tier; for example, the V8 engine skips
the interpreter and goes straight to tier 2.

Tier 2. The second tier of execution is a baseline compiler
that compiles the bytecode to assembly code as quickly as
possible, with minimal optimization. The baseline compiler
also inserts instrumentation into the compiled code to collect
profiling information. The profile information that is collected
by the baseline compiler includes the types of variables
and of object properties and the shapes of objects whose

properties are accessed/modified during function execution.

The baseline code is executed many times before a function
is considered hot, e.g., SpiderMonkey typically executes the

baseline compiled code one thousand times before moving
to the next tier [1]. This large threshold is intended to help

ensure that the type information gathered by the profiler is
stable and hopefully will not change in the future (if it does
change then deoptimization will be triggered, discussed in
Section 3.3). This threshold may vary based on other factors
such as whether a function contains back-edges which are
frequently visited or whether a function has been deoptimized
earlier.

Tier 3. The third tier of execution is an optimizing compiler
that compiles hot functions based on profile information col-
lected in the previous runs of the function, i.e., the baseline
compiled code. The profile information may be invalidated
by future calls to the function being optimized (e.g., the types
may change), therefore the optimized code also contains
guards that check the assumptions under which the code was
compiled. If those guards are violated then deoptimization
will happen, moving execution from the optimized code back
to the baseline compiled code from tier 2. The optimizing
compiler performs various optimizations such as loop invari-
ant code motion, common subexpression elimination, guard
hoisting, function inlining, and polymorphic cache inlining to
speed up the execution of the function. The optimizing com-
piler is relatively slow compared to the interpreter and base-
line compiler, therefore modern JavaScript engines adopt a
concurrent compilation strategy. Using this strategy, the time
taken for compilation is not a big concern for performance
because it is not in the critical path for program execution.

3.3 Type Specialization and Deoptimization

Many of the most effective optimizations performed by the
optimizing compiler are based on type specialization. For
example, consider the expression “a + b”. In the general
case (without type specialization), variables a and b will
refer to boxed values residing in the heap that are tagged to
specify the types of those values; these are called dynamic
values. To perform the + operation, the code must unbox a
and b, determine their respective types based on their tags
(requiring a series of branch instructions), perform any type
conversions necessary, perform the operation, then box the
resulting value along with its type tag. This process must
be used for all operations on dynamic values, significantly
slowing the execution time.

If, however, the compiler has reason to believe that a and
b are (almost) always of certain types based on the profile
information collected by the baseline compiled code, then
it can specialize the optimized function to those types. It
does not need to use dynamic values for a and b, it can use
unboxed values instead; it does not need to check type tags to
determine what operation to perform for +, it can directly use
the operation pre-determined by the known types of a and b,
and it can optimize the emitted code based on this knowledge.
This is an example of type specialization, and it is one of the
most effective means available for improving execution time
of dynamically-typed languages. Another example of type
specialization takes advantage of object shape information to
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efficiently access object properties, e.g., using polymorphic
inline caches [21].

The essential problem is that the profile information on
types and object shapes is necessarily unsound—observed
types during profiling do not guarantee what the types will
be in future executions. Deoptimization is the recovery mech-
anism the engine uses when current types do not match the
assumptions used when optimizing the function in tier 3. The
engine does not discard the baseline compiled code from tier
2 when it generates the optimized code in tier 3. Instead, for
each guard point where type information is checked and may
be invalidated, the engine maintains a mapping from the opti-
mized code to the equivalent point in the baseline compiled
code. When a guard fails, execution stops at that guard in the
optimized code and resumes at the equivalent point in the
baseline compiled code, which is not type specialized and
hence can handle any possible type. Deoptimization is an
inherently expensive operation, and reducing the number of
deoptimizations is a primary goal when optimizing engine
performance.

Deoptimizations can be classified into different categories
depending on their exact cause. A type-based deoptimization
is caused by attempting to use a value that has a different
primitive type than expected (number, boolean, string,
object, undefined, or null). A shape-based deoptimiza-
tion is caused by attempting to access an object that has a
different shape than expected (i.e., the property offsets are
potentially different). These are the two kinds of deoptimiza-
tions that we target in this paper.

Other kinds of deoptimizations are caused by speculative,
optimistic assumptions made by the optimizing compiler
that may not be valid. For example, because arrays are
just objects in JavaScript, array elements in the middle
of the array can be deleted leaving a “hole” in the array.
The optimizing compiler assumes that there are no holes
in an array. Numbers in JavaScript are doubles, but the

optimizing compiler assumes that they are integers for added
performance. Computed property accesses (i.e., computing
an arbitrary string and using it as a property name) can be
anything, but the optimizing compiler assumes that it will be a
property actually in the object being accessed. For all of these
assumptions the compiler must emit a guard to check that
assumption in case it is not true, and trigger a deoptimization
if it is not. We do not focus on these kinds of deoptimizations
in this work, but they are an interesting target for future work.

4. Ahead-of-Time Type Profiling

In this section we describe our technique for performing
ahead-of-time profiling on the server-side and for taking ad-
vantage of that profile information on the client-side. Fig-
ure 2 gives a high-level overview of our technique’s flow. The
server will profile the JavaScript program in two phases to
collect profile information. This usually happens during the

feature testing or regression testing phase of the application.
Instead of a regular browser, the developers use a lightly mod-

ified version of the browser (as described later in this section)
while performing the manual or automated regression testing,
in order to collect the profile information. The application is
then annotated with this profile information. The advantage
of this approach is that whenever the application is updated,
a new profile can be captured using the existing test suite and
a new version of the annotated program can be created. The
annotated version is then sent over the network to the client
on request; the client can take advantage of that information
if it is aware of the ahead-of-time profiling, or safely ignore
that information if it is not.

We now describe in detail the server’s ahead-of-time pro-
filing technique and the insights required to collect the most
useful information, and then the modifications required of the
client to take advantage of the profile information. To clarify
a potential point of confusion: we distinguish between the
engine’s standard runtime profiler used to collect informa-
tion for the optimizing compiler (the online profiler) and our
ahead-of-time profiler (the offline profiler) that collects the
information gathered by the online profiler and preserves it
past the end of the program’s execution.

4.1 Server-Side Profiling

We concentrate our efforts specifically on type-based and
shape-based deoptimizations. We currently ignore the other
kinds of deoptimizations discussed in Section 3, though they
may be interesting targets for future work. The ahead-of-time
profiler operates in two phases: the initial phase and the
stability testing phase. We begin with the initial phase.

4.1.1 Initial Profiling Phase

Consider Figure 3, which shows an example execution time-
line for a single function within the program being profiled,
where time is measured in number of function invocations.
The function starts off in tier 1 (the green portion). Once the
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information and combines it with online profile information during the (6) execution of the application.

function becomes warm it goes through the baseline compiler
and starts executing the baseline compiled code (the blue
portion). During this time the online profiler is collecting
information about types and object shapes. Once the function
becomes hot it goes through the optimizing compiler and
starts executing the optimized compiled code (the red por-
tion). If the function must be deoptimized, for example, by a
changing type or object shape, then the function reverts back
to the baseline compiled code (and again is being profiled by
the online profiler). If the function subsequently becomes hot
again then it is recompiled by the optimizing compiler. The
optimizing compiler may inline function calls as part of its
optimizations, thus the optimized function may incorporate
additional code over the baseline version.

By modifying the online profiler to save its information to
an external file (a simple change to an API that all modern
browsers already provide for accessing the online profile
information), the offline profiler has access to each function’s
timeline, including whether the function ever became hot and
all of the profile information about types and object shapes
used by the function, as well as the number of deoptimizations
that happened, where they happened, and why they happened.

Naively, one could attempt to optimize the program by
marking each hot function and providing all of the collected
type and shape information. The client could then immedi-

ately compile all hot functions (with parallel compilation
to avoid load-time latency), using the provided type and
shape information. Ideally this would allow the client to
use optimized code right away while avoiding all (type- and
shape-based) deoptimizations found during offline profiling
(in Figure 3, all of the blue portions would be replaced by red
portions). However, this approach does not work for three
reasons.

Reason 1. Tracking shape information requires a lot of data,
significantly increasing the amount of annotations that need
to be sent over the network. Also, there is a large cost for
the client in terms of memory and time, because the client
needs to keep track of the executing program’s object shape
information in order to take advantage of the information
from the ahead-of-time profiler. Our preliminary experiments
show that tracking shape information in the client takes
at least several megabytes of memory and increases client
execution time by an average of 27%. We want to be able to
reduce shape-based deoptimizations without incurring this
overhead. Therefore, rather than have the offline profiler
record actual shape information we instead have it record
the program points at which shape-based deoptimization
happened during the ahead-of-time profiled execution. This
information is sent to the client instead of the exact shape



information; we explain how the client uses this program
point information in the next subsection.

Reason 2. There is a very common coding idiom used by
JavaScript programmers that uses the primitive JavaScript
values null or undefined as a sentinel value to signal
the end of some iteration. For example, think of a list of
integers that is terminated by a null value to signal the end
of the list. A variable x holding the value of the current
position in the list would be an integer up until the point
that sentinel value is reached, then variable x changes type
to null instead. This type change then triggers a type-based
deoptimization. We could eliminate that deoptimization by
compiling the function at the beginning knowing that x
could be an integer or null. However, the problem is that
this newly optimized function would actually run slower
than the original optimized function with the deoptimization,
because the original compiled function could perform many
optimizations relying on x being an integer and is thus much
faster than the newly compiled code which must account for x
being either an integer or null. The original deoptimization
is slow, but happens once and only at the end of the function’s
lifetime. The end result is that while the newly optimized
function avoids the deoptimization, it is in aggregate slower
than the original optimized function plus the deoptimization.

For this reason, our offline profiler ignores the type infor-
mation from the last type-based deoptimization in the last
optimized execution of the function being profiled (in Fig-
ure 3, this would be the last type-based deoptimization in
the figure). We assume that this deoptimization is from the
coding idiom described above, and therefore we allow that
last type-based deoptimization to remain.

Other deoptimization patterns can also occur due to very
rare unexpected types or shape modifications during the
execution of the application. Our technique does not consider
this as a special case and records the unexpected type in the
log. When this type is used in the client side to optimize
the hot function, the optimizing compile might generate
sub-optimal code. Therefore, there is a tradeoff between
cost of executing sub-optimal code without deoptimization
using offline profile information versus the collective cost of
deoptimization, the cost of profiling after deoptimization, and
the cost of executing sub-optimal code after the function is
regarded hot again. In most cases we found that ignoring the
last deoptimization was sufficient for better performance.

Reason 3. Some functions are inherently type unstable and
will consistently be deoptimized no matter how much profile
information is saved (often because of other kinds of deopti-
mizations rather than type- and shape-based deoptimizations).
Optimizing these functions will result in a net loss in per-
formance because of the constant deoptimization. We set a
threshold value for number of deoptimizations (of all kinds,
not just type- and shape-based) and mark all functions that
exceed this threshold as non-optimizable in the program’s
profile annotations.

4.1.2 Stability Testing Phase

The amount of annotations added to a program as comments
by the offline profiler increases the size of the program, and
hence provides a cost in terms of network bandwidth when
sending the program from the server to the client. We would
like to minimize that cost as much as possible. The purpose
of the stability testing phase is to figure out which program
annotations may have unnecessary information, which we
can then drop to minimize the annotation size. This phase is
solely to optimize the size of the program annotations, it does
not affect the client-side optimizations (either positively or
negatively).

Recall that the threshold for making a function hot and
sending it through the optimizing compiler is significantly
higher than it might be in a statically-typed language (on the
order of 1,000 invocations) in order to make it more likely
that the baseline profiler has seen all of the relevant type
information before optimization, thus reducing the chances
of deoptimization. This threshold is very conservative be-
cause the cost of those deoptimizations is so high. The idea
of the stability testing phase is to detect functions that sta-
bilize much earlier than this threshold; for those type-stable
functions we can omit the type information from the profiler’s
annotations (while still marking them as hot). At the client we
drastically reduce the amount of time the baseline profiler is
run before optimizing a function that is marked hot by the of-
fline profiler, but still leave enough time that these type-stable
functions have all of the necessary type information collected
by the client engine’s online profiler. In other words, we are
dropping the type annotations for the type-stable functions to
save space, then reconstituting them on the client side via the
normal online profiling. The stability testing phase identifies
the type-stable functions where we can be sure that the online
profiler will get all of the necessary type information even
though we are reducing the amount of time it has to profile
those functions.

We define a potential type-stable function as one that, in
the initial phase, was marked as hot but had no deoptimiza-
tions (except perhaps a final type-based deoptimization per
the coding idiom described earlier). We detect type-stable
functions empirically by rerunning the same program on the
same input as for the initial phase, but taking all of the poten-
tial type-stable functions and initializing their hotness counter
to a high value (rather than the normal zero), but without us-
ing any of the type information gathered by the initial phase.
Any potential type-stable function that still does not have
any deoptimizations is considered type-stable and their type
annotations are removed from the program.

4.2 Client-Side Optimization

When the client receives a program containing annotations
from our ahead-of-time profiler (given as code comments), it
strips them from the program when that program is read into
the engine’s memory and stores them in an object we call the



Oracle. The Oracle stores the profile information indexed by
function.

When a function is first loaded, the client engine consults
the Oracle to determine if it is a hot function. If so, the func-
tion’s hotness counter is initialized to a high value (rather than
zero) so that it will be quickly passed to the optimizing com-
piler. If, on the other hand, the profile information indicates
that this function is too type unstable, then the client engine
marks it as unoptimizable so that it will never be passed to
the optimizing compiler. These two mechanisms (the hotness
counter and the unoptimizable mark) are already present in
all modern JavaScript engines, and thus engines using our
technique need only minor modifications to take advantage
of the Oracle’s information.

When a function is being compiled by the optimizing
compiler, the Oracle is again consulted to gather the profiled
type information. The optimizing compiler already consults
the online profiler to gather type constraints in order to
perform type inference; it is a simple change to have it
also gather type constraints from the Oracle as well. The
optimizing compiler also already uses shape information from
the online profiler to inline accesses to objects (i.e., to use
offset information to jump directly to a property rather than
using a hash table). It is again a simple modification to have
the compiler consult the Oracle to determine if a particular
object access triggered a shape-based deoptimization during
ahead-of-time profiling, and if so to avoid inlining the access.
By avoiding this optimization we eliminate the possibility of
shape-based deoptimizations at this point; while the lack of
optimization slows down the code, the benefit of avoiding
deoptimization provides a net gain in performance.

Consider Figure 4. This figure represents an example
timeline on the client side for the same function as Figure 3
(which represented the function’s execution on the server-
side during profiling). We see that there is still a warmup
phase, but that the function is optimized much earlier than
before. The first two deoptimizations are removed, but at
the expense of an unoptimized object property access to
eliminate the shape-based deoptimization. Finally, the last
type-based deoptimization still remains to account for the
common JavaScript coding idiom described previously.

5. Evaluation

To evaluate the benefits of our ahead-of-time profiling tech-
nique, we implement it using Mozilla’s production-quality
JavaScript engine SpiderMonkey and test it on three different
benchmark suites:

e Octane, the industry-standard JavaScript performance
benchmark suite [7].

¢ Physics, a set of open-source JavaScript physics engines
for web games [4, 8,9, 11].

¢ Membench50, a benchmark suite consisting of real-world
websites that heavily use JavaScript [5].

Note that throughout this section, “deoptimizations” refers
specifically to type- and shape-based deoptimizations.

We run our experiments on an 8-core Intel 17-4790 ma-
chine with 32GB RAM running Fedora 20 Heisenbug as
the profiling server and another machine with the same con-
figuration as the client. Below, we first give details on the
modifications we made to the SpiderMonkey engine for our
implementation and then describe the results for each of the
three benchmark suites in turn.

5.1 SpiderMonkey Modifications

We modify SpiderMonkey version 224982 from the mozilla-
central repository [6] as the profiling engine and the client
engine. The modified engines are available as an anonymized
download. ' We use an unmodified SpiderMonkey of the
same version as the baseline to compare against. The specific
modifications and heuristics that we use for the server and
the client are as follows.

Server. The profiling engine is modified to log the following
three classes of information along with the location in the
source where they are observed. The location is defined by
{file name, line number, column number} in the source code.

e All type-based and shape-based deoptimizations that oc-
cur during the execution of the program.

* Any newly observed types that trigger type-based deopti-
mizations.

¢ Hot method and loop compilations that are performed by
the IonMonkey optimizing compiler.

We use the SpiderMonkey default of 10 iterations as
the warmness threshold and 1,000 iterations as the hotness
threshold. Any function that is deoptimized more than 10
times is considered a type-unstable function.

For our prototype implementation we send the profile
information as a separate text file which is read by the client,
rather than embedding it in the original JavaScript program.
Embedding the annotations and stripping them out is trivial,
but keeping them separate is more convenient for running
experiments.

Client. The client is modified to read the program anno-
tations into an oracle object. The oracle is consulted when
the JSScript object is first created in the client engine. The
warmup counter for a hot function is initialized to 950 instead
of 0; thus hot functions will be compiled after 50 executions
of the baseline compiled code rather than 1000.

5.2 Ahead-of-Time Profiling Cost

There is a small cost on the server-side to do the ahead-of-
time profiling, though this cost is negligible. The profiler
must run the program twice (once for each profiling phase)
and write out the online profiler’s information to disk. That

!https://dl.dropboxusercontent.com/u/206469/dls15.zip
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Figure 5: Average speedup of Ahead-Of-Time Type Profiling (AOTTP) versus the baseline. Higher is better.

Table 1: Number of hot functions, the total number of deoptimizations observed during the baseline and AOTTP approach, and
the percent reduction in number of type and shape-based deoptimizations.

Benchmarks # hot funcs Baseline deopts AOTTP deopts % reduction in deopts
box2d 254 15 5 66.66

crypto 55 12 4 66.66
earley-boyer 69 5 2 60

mandreel 71 0 0 -

typescript 324 73 49 32.87
deltablue 66 1 1 0

gbemu 171 20 17 15

pdfjs 93 25 15 40

Average 137.88 18.85 11.62 40.17

Table 2: Program annotation size, the benchmark size without annotations, and the percent size overhead when adding the

annotations to the program

Benchmarks Profile size (kB) Benchmark size (kB) % overhead in size
box2d 339 374.01 9.08
crypto 6.57 63.91 9.97
earley-boyer 6.04 211.10 2.81
mandreel 5.61 5016.26 0.11
typescript 51.99 1254.68 4.11
deltablue 5.14 41.58 12.37
gbemu 20.22 531.99 3.80
pdfjs 16.08 1482.06 1.06
Average 18.08 1121.9 541

information is then run through the profile analyzer to parse
and collate the provided information in order to create the
program annotations. This analysis process takes from a few
milliseconds to a few seconds over all of our benchmarks.

5.3 Octane Benchmark Suite

The Octane benchmark suite is the industry standard bench-
mark suite used to measure the performance of JavaScript
engines. Because our technique applies only to JIT compiled
code, we consider a subset of Octane benchmarks which run

for a reasonable amount of time, have a significant amount of
hot functions (a minimum of 50), and have deoptimizations.
For the other benchmarks in the suite, ahead-of-time profiling
can be avoided altogether. Benchmarks like splay and regexp
focus on different parts of the engine like the garbage col-
lector and the regular expression engine; the zlib benchmark
is an asm. js benchmark testing the efficiency of a different
compiler in the JavaScript engine; and the code-load bench-
mark does not exercise the optimizing compiler. Therefore,
we do not consider those benchmarks. Choosing a subset



of benchmarks is justified for our approach because unlike
other online compiler optimizations that are always "on", the
offline profile information based optimization is optional and
can be disabled for applications which do not show additional
speedup.

Calculating Speedup. Octane benchmarks provide scores
upon completion of individual benchmarks. The higher the
score the better the performance. To calculate the speedup,
we run each benchmark 22 times in different VM instances
and compute the average score of the last 20 times.

Training Inputs. Octane benchmarks typically do not take
in any user input. Only a few of them take specific inputs from
the external world, e.g., pdf.js and typescript. For example,
the typescript benchmark is a typescript compiler that com-
piles itself. We used the jquery.ts file (with minor mod-
ifications) from the TypeScriptSamples Github repository?
as the training input instead of the typescript benchmark’s
regular input. For the rest of the benchmarks, we modify them
with different parameters to generate the training inputs for
our server. For example, the crypto benchmark was modified
to encrypt and decrypt different strings and the box2d bench-
mark was initialized with different step parameters. In this
way we ensured that the ahead-of-time profiling was always
done on different inputs than the client-side performance
evaluation.

Observations. Figure 5 shows the speedups obtained by
our ahead-of-time type profiles (AOTTP) against the baseline
implementation. The most significant improvement in the per-
formance is seen for the gbemu benchmark where the AOTTP
approach is 29% faster compared to the baseline. On aver-
age the AOTTP approach shows 13.1% improvement over
the baseline configuration. Given the fact that SpiderMon-
key is already highly optimized, this speedup is considered a
significant performance improvement by the SpiderMonkey
development team.3

Table 1 shows the reduction in deoptimizations when our
AOTTP approach is used versus the baseline configuration.
Except for mandreel and deltablue benchmarks, our AOTTP
approach ensures that a significant amount of deoptimizations
are avoided. On average 40.17% of the deoptimizations are
eliminated using the AOTTP approach. The mandreel bench-
mark is generated using the Mandreel C++ to JavaScript com-
piler. Therefore, mandreel does not show any kind of deopti-
mization during the execution and is type-stable throughout
the execution.

Comparing the percentage of deoptimizations reduced
shown in Table 1 with the speedups numbers from Figure 5,
one distinct observation would be that higher percentage of
reduction in deoptimizations does not always correspond
to improvement in performance. This is because, not all
deoptimizations are in the critical path of execution of the

2 https://github.com/Microsoft/TypeScriptSamples
3 Personal communication at #jsapi IRC channel

benchmark. Avoiding deoptimizations that occur in a function
that makes up most of the execution time would help improve
performance of the application better.

The space overhead for the program annotations is min-
imal. Table 2 shows the size of the type profiles compared
against the size of the benchmarks. On an average, the pro-
file size is only around 5.41% of the size of the benchmarks.
The typescript benchmark produces the largest profile infor-
mation among all of the octane benchmarks. It produces a
51.59kB annotation which is around 4.11% of the size of the
benchmark. A major chunk of the space overhead is due to
the program location information which is {file name, line
number, column number). It is possible to drastically reduce
this overhead by annotating the profile information directly
in the source code instead of having a separate file.

5.4 JavaScript Physics Engines

There is no definitive way of measuring JavaScript perfor-
mance when embedded in a browser, so we take two different
approaches in this subsection and the next. Here we want
to measure computation-heavy JavaScript code performance
in a browser setting. We use four open-source JavaScript
physics engine demos as our benchmarks and use frames-
per-second (FPS) as our metric for evaluating performance.
Our hypothesis is that ahead-of-time profiles will show an
improvement in the FPS values earlier in the execution of the
benchmarks, because our ahead-of-time approach allows the
client to optimize hot functions much earlier during execu-
tion. We believe that these demo applications best capture the
behavior of computation-heavy applications where the user
expects good performance from the application from the time
the application is launched.

Evaluation Setup. We evaluate 4 JavaScript physics en-
gines: three.js [11], pixi.js [9], matter.js [4], and physics.js [8].
We use 2 demo applications from three.js and one each from
pixi.js, matter.js, and physics.js, yielding a total of 5 physics
engine benchmarks. These different engines have different
ways of calculating FPS values, and so the x-axes of the
graphs showing FPS results in Figure 6 are different. The
three.js and pixi.js applications emit FPS values for every
frame that is generated. Therefore, the x axis in Figures 6a,
6b, and 6¢ represent execution times in terms of frames dis-
played. The matter.js and physics.js applications emit FPS
values every second. Therefore, in Figures 6d and 6e the x
axis represent execution time in terms of seconds.

The benchmarks are inherently random and generate
random collisions, patterns, and movements of objects for
every invocation of the program. Therefore, our training input
is guaranteed to be different compared to the evaluation input.

Observations Table 3 shows the improvement in FPS val-
ues for the physics engine demos during the first few seconds
of execution. On average, we see 6.75% improvement in the
FPS values across all the applications with three.js: canvas



Table 3: Reduction in deoptimizations for JavaScript physics engine demo applications and the improvement in FPS values

when using ahead-of-time profiling.

Benchmark # hot funcs Baseline deopts AQOTTP deopts Reduction in deopts FPS improvement
three.js:canvas ascii 99 4 3 25% 7.3%
three.js:canvas camera orthographic 71 1 1 0% 7.5%
pixi.js:3D balls 31 10 3 70% 5.9%
matter.js:multi-body collision 50 7 0 100% 6.5%
physics.js:multi-body-collision 75 33 30 9.09% 6.5%
Average 65.2 11 74 40.82% 6.75%

Table 4: Profile annotation overhead for the JavaScript physics engine demo applications.

Benchmark Profile size (kB) Benchmark size (kB) Size overhead
three.js:canvas ascii 12.00 864.47 1.40%
three.js:canvas camera orthographic 8.33 846.32 1.00%
pixi.js:3D balls 3.86 225.75 1.50%
matter.js:multi-body collision 7.92 602 1.30%
physics.js:multi-body-collision 13.13 556 2.36%
Average 9.05 618.9 1.52%

ascii and matter.js: multi-body collision benchmarks showing
significant improvement in the FPS values during the first
20-30 seconds of execution.

Figure 6 shows the FPS values seen while executing the
physics engine demo applications for the first 60 seconds.
The figure shows the FPS values computed for a single rep-
resentative run. For example, Figure 6a shows the evolution
of FPS values for the application three.js: canvas ascii. For
the first 600 frames the AOTTP configuration shows better
FPS values versus the baseline, then gradually the baseline
FPS converges to be the same as the AOTTP. This early per-
formance lead by AOTTP shows the effect of optimizing hot
functions early. The other benchmarks have similar behavior.
This is most easily seen in Figure 6d; the other benchmarks
also converge, but only after several minutes. To keep the
graphs legible, we only show the first 60 seconds and so for
the other benchmarks the convergence point is not shown.

In some cases the FPS values for the AOTTP optimized
version drops below the baseline. This drop is not due to
anything inherent in the AOTTP approach, but rather is due
to the inherent randomness and dynamism in the benchmarks,
such as when exactly garbage collection is triggered. We ran
the experiments for each of the benchmarks multiple times
and observed similar average speedup in the FPS values for
the AOTTP configuration.

Table 3 shows the percentage reduction in the deoptimiza-
tions for the benchmarks. On average the AOTTP approach
avoids 40.82% of the deoptimizations across all the bench-
marks. The benchmark pixi.js:3D balls is type stable for
most parts and does not have any deoptimizations that can
be avoided by AOTTP. But just identifying type-stable hot

functions and compiling them eagerly yields a speedup.
Reduction in deoptimizations and the improvement in FPS

values do not correlate because of multiple reasons. Some

deoptimizations are more critical than others and cause major
slowdowns in execution of the program. Avoiding such de-
optimizations show significant improvement in performance.
Also, in case of three.js:canvas camera orthograhic bench-
mark, there is no reduction in deoptimizations using our tech-
nique. But we see improvement in performance by simply
optimizing the hot functions early based on the offline profile
information.

As shown in the Table 4, the space overhead for the profiles
is negligible for all of the benchmarks. The average overhead
is only 1.52%.

5.5 Membench50

Membench50 is a benchmark suite consisting of 50 real-
world popular JavaScript-heavy web pages, primarily de-
signed to evaluate the memory usage of the JavaScript engine.
Since our optimization applies to programs that exercise the
optimizing compiler, we filter out the websites that have fewer
than 30 hot functions.

We use a popular automated website testing tool, Selenium
IDE [10], to simulate user interactions for these websites. For
each of the websites, user interactions such as mouse clicks,
key presses, and scrolling are recorded using the IDE. These
interactions are saved as individual test cases and used as
inputs for capturing the offline profile information. Different
test cases are used to simulate the user interaction at the client
side.

Performing an ideal performance analysis of our approach
is difficult in this setting, because we would need to isolate
the effects of our optimizations in the presence of network
and IO latency in a web browser. Therefore, we present
the percentage of deoptimizations that are avoided by our
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Higher is better.

approach as a metric to indicate the effectiveness of our
optimization.

Table 5 shows the percentage reduction in deoptimizations
using the AOTTP approach. In general, most of the bench-
marks show reduction in the deoptimization counts while
using the AOTTP technique. On average there is a 33.04%
reduction in deoptimizations across all benchmarks, with an

average profile size of less than 13.08kB. The size of the
JavaScript code in these websites are in the order of MB.
Therefore, the overhead of profile size is negligible compared
to the size of the website. To give a rough estimate, all of
the websites present in this benchmark suite use the jquery li-
brary. The average profile size is 13% of the size of the jquery
library. Therefore, it is safe to assume that the space overhead



Table 5: Experimental results for a subset of Membench50 benchmark suite: number of hot functions, number of deoptimizations
in the baseline, number of deoptimizations using AOTTP, percentage reduction in the deoptimizations, and size of the aggregate

profile collected using AOTTP approach.

Benchmarks # of hot funcs  # Baseline deopts # AOTTP deopts Reduction in deopts  Profile size (kB)
businessinsider.com 393 44 20 54.54% 84.05
lufthansa.com 30 12 10 16.66% 3.81
amazon.com 104 23 13 43.47% 21.18
tbpl.mozilla.org 30 17 11 35.29% 2.12
taobao.com 49 18 16 11.11% 4.62
nytimes.com 87 27 24 11.11% 227
cnn.com 208 22 18 18.18% 19.76
bild.de 42 2 1 50% 8.49
spiegel.de 32 13 10 23.07% 2.40
lenovo.com 34 0 0 - 3.17
weibo.com 44 4 1 75% 2.37
ask.com 40 4 3 25% 2.82
Average 91.08 15.5 10.58 33.04% 13.08

Table 6: Percentage of type- and shape-based deoptimizations
(TSDeopt) and percentage of unclassified deoptimizations
(UDeopt) verses total number of deoptimizations for Octane
benchmark suite.

Benchmarks All Deopts TSDeopt UDeopt
box2d 40 40% 27.5%
crypto 24 33.33% 20.8%
earley-boyer 42 9.5% 9.5%
mandreel 3 0% 100%
typescript 595 9.7% 25.8%
deltablue 4 25% 75%
gbemu 112 17% 11.6%
pdfjs 73 17.8% 17.8%
Average 111.62 19.04% 36%

of the ahead-to-time profile for all of these benchmarks is
negligible.

5.6 Kinds of Deoptimizations

Our technique focuses on type- and shape-based deoptimiza-
tions, though other kinds of deoptimizations can happen. We
rely on the JavaScript engine to classify each deoptimization
for us, in order to determine which ones to handle with our
profiling technique. One difficulty we encountered specific
to SpiderMonkey is that, for technical reasons having to do
with the engine’s implementation, there are some deoptimiza-
tions that the engine leaves unclassified. In other words, for
these deoptimizations we do not know whether they were
type- or shape-based or some other kind of deoptimization.
Our implementation conservatively assumes that they are not
type- or shape-based and ignores them. Table 6 shows for
each Octane benchmark during ahead-of-time profiling the
total number of deoptimizations, the percentage that were
classified as type- or shape-based, and the percentage that
were left unclassified.

We see that a significant portion of the deoptimizations
are classified as type- or shape-based, but that an even larger
portion are left unclassified. Based on our experience we
conjecture that many of these unclassified deoptimizations
are actually type- or shape-based and would be amenable to
our technique if we could recognize them. However, doing so
would require much more extensive changes to the profiling
engine (but not the client engine). Considering that we get
a significant performance benefit just from handling the
identified type- and shape-based deoptimizations, it is likely
that extending our technique in this way would yield even
more significant performance gains.

6. Conclusion

We have described a technique to optimize JavaScript pro-

grams sent from a server to a client by performing ahead-
of-time profiling on the server side in order to reduce de-

optimizations on the client side. We have shown that these
deoptimizations are an important concern for performance,
and that reducing the deoptimizations provides a significant
performance benefit. Besides reducing deoptimizations, our
technique also allows hot functions to be compiled much
earlier than they normally would and without having to fear
increased deoptimizations due to the reduced profiling time
entailed by early compilation.

Our technique relies on several key insights to be practical
and effective, such as identifying the correct information to
profile to tradeoff the costs and benefits of type profiling and
identifying common coding idioms that directly impact the
effectiveness of profiling.

We evaluate our technique over three sets of benchmarks:
the industry-standard Octane benchmark suite, a set of
JavaScript physics engines, and a subset of real-world web-
sites from the Membench50 benchmark suite. Our evaluation
shows a maximum speedup of 29% and an average speedup



of 13.1% for Octane benchmarks, a maximum improvement
of 7.5% and an average improvement of 6.75% in the FPS
values for JavaScript physics engines, and an average 33.04%
reduction in deoptimizations for the Membench50 bench-
marks. The collected profile information is on an average 4%
of the size of the JavaScript code.
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